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Abstract: Insects and microbes have developed complex symbiotic relationships that 
evolutionarily and ecologically play beneficial roles for both, the symbiont and the host. In most 
Hemiptera insects, bacterial symbionts offer mainly nutritional, defensive, and reproductive roles 
in addition to promoting the adaptive radiation of several hemipteran phytophagous lineages. 
The tropical plant bug Monalonion velezangeli (Hemiptera: Miridae) is a polyphagous herbivore 
considered an important insect pest for several economically relevant tropical crops, but 
information about the composition of its bacterial microbiota was missing. In this study, we 
describe the diversity and structure of the bacterial microbiota in the nymph and adult life stages 
of M. velezangeli using Illumina high-throughput sequencing of 16S ribosomal RNA gene 
amplicons (meta-barcoding). We found that both insect life stages share a similar microbiota in 
terms of bacterial diversity and community structure. The intracellular symbiont Wolbachia 
dominated the overall microbiome composition (~92%) in these life stages. Members of the core 
microbiota include Wolbachia, Romboutsia, Ignavibacterium, Clostridium, Allobaculum, 
Paracoccus, Methylobacterium, Faecalibacterium, Collinsella, Rothia, Sphingomonas and 4 
other undetermined bacterial genera. Based on PCR screening and DNA sequencing of the wsp 
gene, Wolbachia infection was confirmed in almost 80% of samples, and represented by two 
different isolates or strains within the supergroup B. This data offer opportunities for studying the 
contribution of symbiotic bacteria in the biological performance of this insect pest, and provides 
a base to explore other insect control methods.

Key Words: bacterial microbiota, endosymbiont, plant bug, Wolbachia, Monalonion, Coffea.
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Introduction:
Most insects harbor diverse microbiota inside their body that collectively perform important 
biological roles for the insect-host in processes such as nutrition, reproduction, immunity, and 
development. These symbiotic interactions involve microbes adapted to live inside specialized 
host cells (intracellular symbionts), or outside cells (extracellular symbionts). The vast majority 
of insect-associated microbes reside in the gut lumen, and some are adapted to live within 
specialized structures in the insect posterior midgut. Insect gut-associated microorganisms have 
been proposed as key players in the adaptive radiation of herbivorous insects by allowing them 
to metabolize or assimilate recalcitrant plant compounds, or to exploit low-nutrient plant 
contents by providing additional nutritious molecules (Motta et al. 2022; Ge et al. 2023; Janson 
et al. 2008; Sudakaran et al. 2017). In some cases the outcomes of this symbiotic interplay in 
plant-feeding insects has also extended to the control of host-plant defense responses for the 
benefit of the insect (Chung et al. 2013; Acevedo et al. 2017; Schausberger 2018; Li et al. 
2019). Moreover, insect-associated microbial symbionts have been shown to confer resistance 
to chemical insecticides in various pest insects (Kikuchi et al. 2012; Blanton and Peterson 2020; 
Sato et al. 2021). 

Equally important, intracellular symbionts (e.g. Wolbachia) that frequently reside within the 
reproductive tissues of most insects are well known as manipulators of insect reproduction. 
Wolbachia are maternally inherited bacterial symbionts that infect at least 65% of insect species 
(Hilgenboecker et al. 2008), and are capable of altering host reproduction and fitness in order to 
achieve high frequency of infection in the host populations (Stouthamer et al. 1999). This 
manipulation can involve cytoplasmic incompatibility (CI) (Sinkins 2004; Dylan Shropshire et al. 
2020), parthenogenesis (Werren 1997; Vavre et al. 2004; Zhou et al. 2021), male-killing (Hurst 
et al. 1999; Fukui et al. 2015), and feminization (O’Neill et al. 1997; Hiroki et al. 2002; Narita et 
al. 2007). Additionally, several lines of evidence show that Wolbachia can affect behavioral 
patterns in their hosts by altering mating, feeding, locomotion, or aggressive behavior in addition 
to learning and memory capacity (reviewed by (Jie Bi 2020)).    

Several Hemiptera plant-feeding insect species in the suborders Sternorrhyncha, 
Auchenorrhyncha and Heteroptera display a variety of insect-microbial symbiosis. 
Phytophagous Sternorrhyncha and Auchenorrhyncha species have piercing and sucking 
mouthparts for stylet-sheath feeding (phloem and xylem sap-suckers) as in aphids and 
leafhoppers. Phytophagous Heteroptera species have macerate-and-flush feeding mouthparts 
(sucking of extra-orally digested plant tissues) as seen in stink bugs and plant bugs. In 
consequence, several of these insect species are agricultural pests of economic importance. 
Most members of Sternorrhyncha and Auchenorrhyncha harbor intracellular obligate symbionts 
within specialized cells or bacteriocytes that provide essential amino-acids and vitamins to the 
insect (Moran and Telang 1998). However, most phytophagous Heteroptera members lack 
intracellular symbionts, but instead have developed relationships with extracellular symbionts in 
special midgut compartments such as midgut crypts and caeca. These extracellular symbionts 
are mainly found in stink bugs, flat bugs and seed bugs, within the infraorder Pentatomomorpha. 
Nonetheless, special symbiont-harboring midgut compartments seems to be absent in most 
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phytophagous species in the infraorder Cimicomorpha which includes true plant bugs such as 
Monalonion velezangeli.

The plant bug M. velezangeli (Hemiptera: Miridae: Bryocorinae) is a neotropical polyphagous 
insect native to Central and South America. This insect feeds on 21 plant species in 14 families 
(Giraldo J. and Benavides M. 2012; Rodas et al. 2014; Ocampo Flórez et al. 2018). It is 
considered as a strict phytophagous insect based on the lack of reports of other feeding habits, 
and the fact that all known members of the mirid subfamily Bryocorinae are herbivorous as well 
(Jung and Lee 2012; Namyatova and Cassis 2016). This plant bug is a notorious agricultural 
pest of cacao (Theobroma cacao, Malvaceae), avocado (Persea americana, Lauraceae), guava 
(Psidium guava, Myrtaceae), and tea (Camellia sinensis, Theaceae) (Jaimes et al. 2015; 
Ramírez-Gil et al. 2019). Monalonion velezangeli is also an emerging pest for coffee crops in 
Colombia especially in the southern coffee-producing regions of the country (Ramirez C. et al. 
2008). The immature (nymph) and adult stages of this plant bug feed on terminal shoot tips, 
young leaves or fruits causing cell-death at the feeding sites as the main direct damage. Severe 
plant damage is mainly caused by nymphal stages when they inject enzyme-rich saliva into the 
plant tissues for extra-oral digestion of the cell contents. Current recommendations for pest 
management vary according to host crops. Common methods include cultural practices (e.g. 
manual collection of insects in the field or flaming), biological control with fungal 
entomopathogens, and insecticides. Despite its significance as an agricultural pest, several 
aspects of the biology of M. velezangeli remain poorly studied including the composition of its 
microbiota. 

Diversity and functional characterization of symbiotic microbiota in Miridae plant bugs have 
been poorly studied except for the strictly phytophagous cotton fleahopper Pseudatomoscelis 
seriatus and the omnivorous Adelphocoris suturalis to the best of our knowledge (Fu et al. 2021; 
Xue et al. 2021; Luo et al. 2021). Knowledge of M. velezangeli associated microbiota is 
fundamental not only to better understand its biology, but also could provide new opportunities 
for the development of insect management methods. For example, symbiont-mediated RNA 
interference (smRNAi) is emerging as a potential approach for control of pest insects in 
agriculture (Dyson et al. 2022), and as an efficient tool for insect gene functional analysis 
(Lariviere et al. 2022). It is necessary to characterize the taxonomic composition of microbes 
within the insect body before any study on the role of the microbiota in insect biology or 
exploration of symbiont-based methods for pest control can be carried out. In this study, we 
analyzed for the first time the diversity and structure of the symbiotic microbiota within M. 
velezangeli nymph and adult life stages using high-throughput DNA amplicon sequencing of 
bacterial 16S rRNA gene (DNA meta-barcoding). Here we discovered a diverse microbiota 
across all life stages that is dominated by few bacterial genera, highlighting the presence of the 
endosymbiont Wolbachia. 

Methods:

Insect collection, DNA isolation and 16S rRNA sequencing: 
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Samples of immature and adult individuals of M. velezangeli feeding on leaves of multiple coffee 
plants (Coffea arabica var. Castillo) were collected from a coffee plantation in the Department of 
Huila (Segovianas, Coordinates: 2.3784, -75.88291), Colombia. Insects were externally 
sterilized by washing three times with 75% ethanol and immediately conserved in 96% ethanol 
for DNA isolation. Three independent samples of immature (pools of 5 nymphal stages, one per 
instar) and three independent samples of adults (pools of one female and one male) of M. 
velezangeli were used for microbiota analysis. Total DNA was isolated from whole-body insects 
using the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) including a lysozyme 
treatment according to the manufacturer protocol. DNA integrity was checked on agarose gel 
and quantified on Nanodrop (Invitrogen, Waltham, MA, USA). PCR amplification of the hyper-
variable region V3V4 of the bacterial 16S rRNA gene was performed using primers 341F (5′-
CCT AYG GGR BGC ASC AG- 3′) and 806R (5′- GAC TAC NNG GGT ATC TAA T- 3′) 
(Caporaso et al. 2011; Klindworth et al. 2012). Illumina sequencing libraries were generated 
with NEBNext® UltraTM DNA Library Prep Kit (New England BioLabs, Ipswich, MA, USA). The 
16S rRNA amplicon Illumina 250PE libraries were sequenced using NovaSeq platform (Illumina, 
San Diego, CA, USA) at Novogene Corporation Inc. (Sacramento, CA, USA).

Processing of 16S rRNA sequence data and taxonomic classification:
Demultiplexed raw 16S rRNA sequences were processed using QIIME2 v.2020.8 (Bolyen et al. 
2019) as follows. Paired-end read sequences were quality-filtered, denoised and clustered 
using DADA2 (Callahan et al. 2016) (dada2 denoise-paired) to produce Amplicon Sequence 
Variants (ASV). The ASVs were taxonomically classified using the plugin feature-classifier 
classify-sklearn with the GreenGenes database (version 13_8) using default confidence 
threshold (≥ 0.7). The ASVs that could not be identified to genus with Greengenes were blasted 
against the NCBI Microbial Genome sequences (Bacteria and Archaea) to identify best hits and 
also compared with the EzBioCloud Database (version 2021.07.07) for assignation of genus 
using 97% identity threshold on both searches. The original GreenGenes identification taxon 
level was maintained when NCBI-BLAST and EzBiocloud resulted in contradictory genus best-
hits at >=97% identify respectively. Contaminant sequences identified as chloroplast or 
mitochondria were removed from processed data tables and excluded from further analyses.

Diversity analysis and taxon abundance comparisons:
The ASV tables for raw abundance and taxonomy classification were exported from QIIME2 and 
processed through the MicrobiomeAnalyst tool (Dhariwal et al. 2017; Chong et al. 2020) using 
the Marker Data Profiling (MDP) pipeline as follows. The ASV abundances were brought to the 
total sum scaling for data normalization and further analysis of diversity. Alpha-diversity was 
estimated using the number of observed taxa (Observed), Chao1, ACE, Fisher and Shannon 
(H’) indexes. Statistical differences between groups (Nymph vs Adult) were assessed with 
Mann-Whitney U test. Beta-diversity was assessed using Bray-Curtis distance between groups 
and their ordination visualized with Principal Coordinate Analysis (PCoA) and Non-metric 
Multidimensional Scaling (NMDS). Statistical differences in community structure between 
groups was tested with the permutational multivariate analysis of variance (PERMANOVA, one-
way) and the analysis of similarities (ANOSIM, one-way). Both were based on Bray-Curtis 
distance as implemented on Past v.4.08 (Hammer-Muntz et al. 2001). Differences in dispersion 
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within each group was tested using PERMDISP (Anderson and Walsh 2013). Bacteria taxon 
abundance bar-plots were built with the MicrobiomeAnalyst tool and the heatmap plots using 
Matrix2png (Pavlidis and Noble 2003). Statistical differences for taxon abundances between 
groups were tested with the Mann-Whitney U test.

Molecular screening of Wolbachia endosymbiont:
Abdomen samples were separately dissected from nymphs or adults under sterile conditions in 
a stereoscope from the M. velazangeli individuals collected in this study and individually used 
for DNA isolation with DNeasy Kit (Qiagen) as described above. Detection and classification of 
Wolbachia was performed following the wsp gene (Wolbachia surface protein) PCR-based 
method established by Zhou et al. (Zhou et al. 1998) as follows. PCR screening was done with 
the wsp-specific primers wsp81F (5′-TGG TCC AAT AAG TGA TGA AGA AAC-3′) and wsp691R 
(5′-AAA AAT TAA ACG CTA CTC CA-3′) in 20 μL reactions containing 1x Green GoTaq® 
reaction buffer (Promega, USA), 250 μM dNTPs, 0.5 μM of each primer, 0.5 u of GoTaq® 
polymerase (Promega, Madison, WI, USA) and 1 μL of DNA template. PCR cycling involved 
one initial step of denaturation at 95°C for 2 min, and then followed by 35 cycles of three steps 
including 95°C for 40 sec, 55°C for 30 sec and 72°C for 40 sec. The cycle ends with a final 
extension of 72°C for 5 min. DNA template integrity was additionally tested by PCR with 
universal primers for arthropod 28SrRNA gene sequences (28sF3633: 5′-TAC CGT GAG GGA 
AAG TTG AAA-3′, and 28sR4076: 5′-AGA CTC CTT GGT CCG TGT TT-3′) using the same 
PCR reaction conditions and cycling described above. Total DNA from a naturally Wolbachia-
infested fruit fly (Drosophila melanogaster) strain was used as positive control in the PCR 
screening experiments. PCR amplicons were visualized with agarose gel electrophoresis.

Sanger DNA sequencing and phylogenetic analysis of Wolbachia wsp amplicons:
A group of 10 randomly selected wsp PCR amplicons (wsp81F/691R primers) derived from the 
M. velezangeli DNA samples were further purified using the QIAquick PCR Purification Kit 
(Qiagen) following the manufacturer protocol. Purified amplicons were directly submitted to ABI 
automated bidirectional sequencing with wsp81F and wsp691R primers. DNA sequence 
chromatograms were processed in Chromas v2.6.6 (https://technelysium.com.au/wp/chromas/) 
for quality and primer-sequence trimming. Bidirectional sequences for each sample were 
clustered into single DNA consensus sequences (isolates) using GeneStudio v.2.2.0 
(https://sourceforge.net/projects/genestudio/). The DNA consensus sequences were compared 
to available sequence data at GeneBank nt database using BLASTn search algorithm and were 
deposited at GeneBank under accession numbers OR129441-OR129450. 

A phylogenetic analysis of the M. velezangeli-derived wsp sequences was performed using the 
web-based Phylogeny.fr platform (Dereeper et al. 2008) along with wsp sequences from   
insect-derived Wolbachia isolates at the GeneBank database as representatives of major 
Wolbachia subgroups found in insects according to Zhou et al. (Zhou et al. 1998). Sequences 
were aligned using ClustalW (v2.1) (Thompson et al. 1994). After alignment, positions with gaps 
were removed from the alignment. The phylogenetic tree was reconstructed using the maximum 
likelihood method implemented in the PhyML program (v3.1/3.0 aLRT) (Guindon and Gascuel 
2003). The default substitution model was selected assuming an estimated proportion of 
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invariant sites (of 0.003) and 4 gamma-distributed rate categories to account for rate 
heterogeneity across sites. The gamma shape parameter was estimated directly from the data 
(gamma=0.398). Reliability for internal branches was assessed using the aLRT test (SH-Like) 
(Anisimova and Gascuel 2006). 

Results:

Microbial 16S rRNA sequence data:
A total of 491,802 denoised non-chimeric merged sequences for the 16S rRNA V3V4 variable 
region were produced among all samples (nymph and adult) after removing putative 
contaminant sequences. Sequence clustering produced 123 ASVs, with an average number of 
ASVs for adult and nymph samples of 57 and 79 respectively. The number of Illumina reads and 
ASV sequences for each sample are detailed in Table 1. Rarefaction curves showed that all 
samples reached richness saturation (Fig. 1A) indicating that sequencing effort was enough to 
capture total diversity (Good’s coverage > 99.99% for all samples, Table 1).

Diversity of bacterial community:
The bacterial diversity associated with the nymph and adult life stages of M. velezangeli was 
analyzed through five alpha-diversity indices (Fig. 1B and Table 2). No statistical differences for 
species richness (Observed species), abundance (Chao1 and ACE) and abundance distribution 
indices (Fisher and Shannon) were detected between nymph and adult stages (Observed 
species: U = 0, p = 0.1; Chao1: U = 0, p = 0.1; ACE: U = 0, p = 0.1; Fisher: U = 0, p = 0.1; 
Shannon: U = 3, p = 0.7).

Differences in microbial community structure (beta-diversity) between nymph and adult was 
assessed with PERMANOVA and ANOSIM analyses, and their ordinal distances (Bray-Curtis 
dissimilarity) visualized with PCoA and NMSD plotting (Fig. 1C,D). PERMANOVA tests whether 
distance in community structure differs between groups (e.g. nymph vs adult) (Anderson 2001) 
whereas ANOSIM tests whether distances between groups are greater than within groups 
(Clarke 1993). Both analyses indicated no significant differences in microbial community 
structure between nymphs and adults (PERMANOVA: F-value: 0.4774; R-squared: 0.1135; p-
value = 0.5016; ANOSIM: R: -0.1111; p-value = 0.7019). We assessed the differences in 
dispersion (variance) within groups with PERMDISP (Anderson and Walsh 2013) considering 
that PERMANOVA and ANOSIM are sensitive to variance within groups. This analysis showed 
that there is homogeneity of multivariate dispersions between nymph and adult samples 
(PERMDISP: F-value: 0.1958; p-value: 0.681).

Removal of Wolbachia-associated sequences is a regular practice for microbiome analysis in 
insects when they are detected in bacterial 16S rRNA libraries (Chandler et al. 2014; Rudman et 
al. 2019). We compared the overall microbial community structure in our samples when 
Wolbachia sequences are kept or removed from the data. The removal of Wolbachia reads did 
not alter the similarities in alpha diversity indices between nymphs and adults (Supplementary 
Table S1) (Observed species: U = 0, p = 0.1; Chao1: U = 0, p = 0.1; ACE: U = 0, p = 0.1; Fisher: 
U = 0, p = 0.1; Shannon: U = 3, p = 0.1). Similarity in microbial community structure between life 
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stages also remained unchanged (PERMANOVA: F-value: 1.698; R-squared: 0.5142; p-value = 
0.2028; ANOSIM: R: 0.2593; p-value = 0.2992; PERMDISP: F-value: 0.0993; p-value = 0.7684).

Taxonomic composition of bacterial community:
From the 123 ASV, 107 (87%) were taxonomically assigned to at least the Phylum level. 
Taxonomic distribution of ASVs included 10 bacteria phyla, 18 classes, 22 orders, 33 families 
and 36 genera. Distribution of relative abundances for phylum, order and genus levels are 
shown in Figure 2 and fully detailed for all taxonomic levels in Supplementary Tables S2 to S6. 
Overall, the Phylum Proteobacteria (92.6%) and Firmicutes (5.2%) represented almost the full 
microbiota detected in this study (Supplementary Table S2, Fig.2A). The orders Rickettsiales 
(Phylum Proteobacteria: Class Alphaproteobacteria) and Clostridiales (Phylum Firmicutes: 
Class Clostridia) with abundances 91.9% and 4.8% respectively dominated the bacterial 
community. To a lesser extent, other 20 orders were present at or below 1% overall abundance 
(Supplementary table S4, Figure 2B). 

From the total 123 ASVs, 95 (77.2%) were assigned to the genus level where 66 ASVs (53.7%) 
were annotated using GreenGenes (≥ 0.7 confidence level) and 29 ASVs (23.6%) annotated 
using BLASTn and BioCloud (≥ 97% identity to top-hit for both algorithms). The remaining 28 
ASVs (22.8%) were considered as undetermined at genus level (Not Assigned). At the genus 
level, Wolbachia (Rickettsiaceae) dominated the overall abundance (91.9%) across nymph and 
adult samples followed by Romboutsia (1.8%), Ignavibacterium (0.8%), Clostridium (0.70%), 
Mycoplasma (0.5%), Allobaculum (0.4%), Blautia (0.4%), Eubacterium_g23 (0.3%), Sporobacter 
(0.3%), Paracoccus (0.3), Methylobacterium (0.2%), Dorea (0.2%), Sediminibacterium (0.1%), 
Faecalibacterium (0.1%), and Ruminococcus (0.1%) as the top 15 taxa. Other 34 genera were 
present at abundances below 0.1% across all life stages (Supplementary Table S6, Figure 2C). 
The relative abundances for bacteria taxa in all taxonomic levels (Phylum to Genus) were 
similar between both insect life stages (Mann-Whitney U test, p-values > 0.05, Supplementary 
Tables S2 to S6). Similarly, no statistical differences were found at bacterial ASV level between 
both life stages (Mann-Whitney U test, p-values > 0.05).

Removal of Wolbachia sequences from this analysis did not alter the similarities in the overall 
relative abundances at ASV or genus levels between life stages (Mann-Whitney U test, p-values 
> 0.05) as estimated above despite changes in the proportions of total reads counts and relative 
taxon abundances across the individual samples. Additionally, apart from Wolbachia, the list of 
the top ten most abundant genus remained unchanged; and in all cases the microbiota was 
dominated by Romboutsia with few changes in the order of the remaining genera (Fig. 3B). 
However, the exclusion of Wolbachia resulted in Firmicutes (69.3%) as the overall dominant 
Phylum, followed by Proteobacteria (10.4%), Chlorobi (6.2%) and other seven Phylum to a 
lesser extent (Fig. 3A). 

Core microbiota:
According to the data collected in this study, the core microbiota of M. velezangeli is composed 
of 21 bacterial ASVs (17% of all ASVs) that were consistently shared between the nymph and 
adult life stages (ASVs present in all samples in this study) (Fig. 2D). These core ASVs were 
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identified by analyzing 42 ASVs present in all samples of both life stage. The remaining 21 
ASVs were present at either nymph or adult. Other 81 ASVs (65.9% of all ASVs) were not 
consistently detected in all samples of each life stage and may represent transient or non-
resident microbes within the microbiome of M. velezangeli.

The bacterial genus assignments for the core 21 ASVs based on 16S GreenGenes database 
are shown in Table 3. These core bacterial genera, listed in decreasing order of abundance, 
included: Wolbachia, Romboutsia, Ignavibacterium, Clostridium, Allobaculum, Paracoccus, 
undetermined Anaerolineaceae, Methylobacterium, Faecalibacterium, undetermined 
Lachnospiraceae, Collinsella, Rothia, undetermined Peptostreptococcaceae, Sphingomonas 
and undetermined Coriobacteriaceae.

Wolbachia PCR detection and profiling:
Taking into account the large proportion of Wolbachia-associated ASVs found in our samples, 
we decided to further investigate the presence of Wolbachia endosymbiont in M. velezangeli by 
PCR screening of the wsp gene. About 79% of the insect individuals tested (22 out of 28) from 
the Segovianas locality resulted positive for Wolbachia infection according to the amplification of 
a ~600 bp DNA band (Figure 4). A PCR test for DNA template integrity showed that all 28 
(100%) M. velezangeli DNA samples were PCR quality grade based on the successful 
amplification of a DNA band for the arthropod 28S rRNA gene target. This indicates that the no 
wsp amplification in 21% (6/28) of the samples could be explained by the absence of Wolbachia 
infection and not because of a low DNA template quality. 

DNA Sanger sequencing was performed for 10 randomly selected wsp DNA amplicons derived 
from M. velezangeli samples. All DNA sequences had clearly defined single-pick 
chromatograms, which suggested the presence of single Wolbachia-strain infections in each 
sequenced sample. A multiple sequence alignment showed that these isolates can be grouped 
in two distinct wsp sequence haplotypes that share 78% similarity between them 
(Supplementary Figure S1). Haplotype 1 (hereafter wMvel1) was represented by 80% (8/10) of 
the sequence isolates in this study, whereas haplotype 2 (hereafter wMvel2) was represented 
by the remaining 20% (2/10) isolates. A BLASTn search against the GeneBank database 
showed that wMvel1 wsp sequence was 99.46% identical (top hit) to a Wolbachia wsp isolate 
from the butterfly Acraea equitorialis (GenBank accession: AJ271195) whereas wMvel2 wsp 
was 98.91% identical (top hit) to a Wolbachia wsp isolate from the planthopper Perkinsiella 
saccharicida (GenBank accession: GU190768) (Hughes et al. 2011). Phylogenetic analysis 
clustered all wMvel wsp sequences within the Wolbachia wsp B supergroup clade (Figure 5) 
and assigned the distinct wMvel wsp haplotypes within two distant subclades respectively along 
with their corresponding wsp BLASTn top-hits.

Discussion:
We used 16S rRNA amplicon high-throughput sequencing to investigate for the first time the 
diversity of the symbiotic bacteria community associated with the tropical plant bug M. 
velezangeli. Here, we found a relatively diverse core microbiota dominated by genera 
Wolbachia, Romboutsia, Ignavibacterium and Clostridium. Although this plant bug is a 
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polyphagous herbivore considered a pest for various tropical crops in America, in this study we 
focused the bacteria screening on a population feeding on coffee plants in Colombia. We found 
that overall bacteria diversity (Alpha diversity, Fig. 1B) was similar between the nymph and the 
adult life stages. Based on the most abundant taxa (ASVs with overall abundance >0.01%), the 
bacterial community composition (Beta diversity) is conserved between these two 
developmental stages. However, there is a degree of variability regarding the presence of 
bacteria with low abundance within and between life stages. The immature forms of M. 
velezangeli go through 5 nymphal instars that differ among them mainly in body size (Giraldo J. 
et al. 2010). The microbial composition we present in this work for the nymph is based on 
pooled individuals from all instars. Hence, whether the overall bacterial community diversity and 
structure experience any changes along nymphal development needs to be addressed in future 
analyses. The bacterial 16S rRNA gene sequence has been used historically as a gold standard 
genetic marker to infer bacteria taxonomic identity and community diversity in high-throughput 
microbiome studies especially with the use of the partial sequencing of some of its nine 
hypervariable sequence regions (V1 to V9) (Van de Peer et al. 1996). In our study, we used the 
sequences of the combined V3-V4 variable regions, a 16S sequence section commonly utilized 
in microbiome analysis; however, it must be noticed that the used of partial sequences of this 
gene marker can result in overestimation of microbial diversity due to bacterial intragenomic 
heterogeneity (Sun et al. 2013), and does not offer enough accuracy for bacteria identification at 
the species or strain level (Johnson et al. 2019a). Being aware of this bias, we mainly describe 
the microbial taxonomic diversity in this study at genus level as the deepest taxonomic rank.

We found that the intracellular symbiont Wolbachia dominated the full microbiota associated 
with M. velezangeli which represent about 92% of the bacterial load within the body of nymph 
and adult stages. The observed high abundance of Wolbachia in our samples may indicate a 
proportionally elevated titer of this endosymbiont in the analyzed insects as well. Presence of 
Wolbachia was also confirmed by PCR screening in M. velezangeli samples. Additionally, DNA 
sequence analysis of wMvel wsp isolates indicates that they belong to Wolbachia B supergroup. 
Insect-infecting Wolbachia strains with major biological effects have been mostly associated 
with host reproductive disturbances such as CI, parthenogenesis, male-killing and feminization 
(Serbus et al. 2008; Werren et al. 2008; Kaur et al. 2021). Furthermore, recent studies suggest 
that Wolbachia infections may also influence other behavioral and physiological processes 
including nutrition, defense and insecticide-resistance (Hosokawa et al. 2010; Nikoh et al. 2014; 
Zug and Hammerstein 2015; Zhang et al. 2020; Soh and Veera 2022). In other mirid species the 
presence of Wolbachia has been associated with reproductive alterations and nutritional roles. 
For example in the predatory mirid bug Macrolophus pygmaeus this parasitic bacteria induces 
strong CI (Machtelinckx et al. 2009). Wolbachia infection in the hematophagous bed bugs 
Cimex lectularius and Cimex hemipterus (Hemiptera: Miridae) creates an obligate mutualism 
that is essential for normal insect growth and reproduction via provision of B vitamins 
(Hosokawa et al. 2010; Laidoudi et al. 2020). Wolbachia infections in insects have been mainly 
associated with host reproductive tissues, but it is also commonly found in several insect 
somatic organs or tissues including brain, salivary glands, gut, malpighian tubules, muscles, fat 
bodies and also as habitant of bacteriocytes (Casper-Lindley et al. 2011; Pietri et al. 2016; Diouf 
et al. 2018; Hosokawa et al. 2010). The presence of this parasitic endosymbiont in M. 
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velezangeli raises new questions about the possible biological implications for this plant bug. 
The detection of two distinct wMvel wsp haplotypes in our analysis suggest that multiple 
Wolbachia strains are present in the insect population tested here. However, insect individuals 
seem to be infected by single Wolbachia strains. Additionally, the prevalence of infection is not 
100% across all insect individuals, which seems to indicate that an obligate mutualism is not the 
proper characterization of the  M. velezangeli - Wolbachia relationship. 

The extremely high abundance of ASV sequences identified as Wolbachia in our samples 
(~92% overall abundance) could introduce a potential confounding effect in the estimation of 
relative abundances for the actual gut-associated bacterial taxa. This possible issue was 
recently analyzed by Wilches et al. (Wilches et al. 2021) using the spotted-wing drosophila 
(Drosophila suzukii) as a case of study when high-throughput sequencing is applied to 
investigate the microbiome in Wolbachia-infected insect samples. The authors detected large 
discrepancies in the measures of alpha and beta diversity as well as in the relative abundances 
of several bacteria taxa in the microbiome between Wolbachia-infected fly samples (mean 
abundance of 98.8% for Wolbachia sequences) and non-infected. This and other work has 
shown that in some cases removing the Wolbachia-associated reads from the analyses could 
also have major impacts in the interpretation of the study results which may be especially 
relevant when comparing infected samples versus non-infected (Wilches et al. 2021; Henry and 
Ayroles 2021). We addressed the impact of removing Wolbachia reads in microbiota diversity 
and structure in M. velezangeli. Here, the exclusion of Wolbachia-associated sequences did not 
affect the similarity in microbiota composition between the life stages.

Apart from Wolbachia (Proteobacteria) the remaining top 10 most abundant bacterial genera 
detected in M. velezangeli include members of Phylum Firmicutes (5.2% overall abundance) 
such as Romboutsia, Clostridium, Allobaculum, Blautia, Eubacterium_g23, Sporobacter, Dorea 
and Faecalibacterium, as well as the Proteobacteria genera Paracoccus, Methylobacterium and 
the Chlorobi genus Ignavibacterium. Members of these Firmicutes genera have been previously 
found in the alimentary canals of other arthropods (Grech-Mora et al. 1996; Husseneder et al. 
2017; Li et al. 2020; Shukla and Beran 2020; Fang et al. 2020; Mejía-Alvarado et al. 2021). In 
our study, Romboutsia (1.75%) (Firmicutes: Peptostreptococcaceae) was the second most 
abundant bacterial genus across all samples. Members of this genus have been mainly found in 
the gut microbiota from several vertebrate animals and insects (Gerritsen et al. 2014, 2017; 
Ricaboni et al. 2016; Johnson et al. 2019B; Shukla and Beran 2020). There is no information 
about the functional roles of the Romboutsia members as gut symbionts; however, they seem to 
be well adapted to live within animal guts (Gerritsen et al. 2017, 2019). Similarly, members of 
Paracoccus, Methylobacterium and Ignavibacterium are regular habitants of arthropod guts 
(Zhang et al. 2016, 2018; Sajnaga et al. 2022). We infer that most abundant bacteria genera 
found in this study, except Wolbachia, are likely residents of the M. velezangeli gut lumen and 
may be involved in important biological processes for this plant bug. Several of these symbionts 
(Romboutsia, Ignavibacterium, Clostridium, Paracoccus, Allobaculum, Methylobacterium, 
Faecalibacterium, Collinsella, Rothia and Sphingomonas) were found to be consistently present 
in all our samples of nymph and adult stages and we consider them as members of the insect 
gut-associated core microbiota. Most of these genera, except for Paracoccus, Methylobacterium 
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and Sphingomonas, are primarily anaerobic bacteria taxa. Compared with the microbiota 
associated with the cotton fleahopper P. seriatus (Hemiptera: Miridae) (Fu et al. 2021) and A. 
suturalis (Hemiptera: Miridae) (Xue et al. 2021) the composition at the genus level within M. 
velezangeli is clearly different. In P. seriatus, the gut microbiome is dominated by bacteria 
Diaphorobacter, Lactococcus, Pseudomonas, Pantoea and Izhakiella; whereas in A. suturalis, 
the gut microbiome is dominated by Erwinia, Acinetobacter, Staphylococcus, and Lactococcus. 
These differences in microbiota composition could be associated with environmental differences 
due to host-plant species, feeding habits and geographical origins.

Several bacteria isolates found in M. velezangeli’s microbiota that belong to genera Paracoccus, 
Methylobacterium and Sphingomonas are potential culturable strains and may also represent 
candidate symbionts for paratransgenic approaches such as symbiont-mediated RNAi (Dyson 
et al. 2022). The use of bacteria within paratransgenesis applications requires a culturable 
symbiont genetically manipulable and especially amenable under aerobic culturable conditions 
(Ratcliffe et al. 2022). Conditions like these make easier bacterial engineering and 
experimentation processes. Future attempts for selection of culturable bacterial isolates from 
the M. velezangeli gut will reveal what microbes have these characteristics.  

Conclusions:
The tropical plant bug M. velezangeli harbors a diverse microbiota, and in some cases it can be 
dominated by the intracellular symbiont Wolbachia. The M. velezangeli microbiota also contain 
potential gut-associated members of the genera Romboutsia, Ignavibacterium, Clostridium, 
Paracoccus, Allobaculum, Methylobacterium, Faecalibacterium, Collinsella, Rothia and 
Sphingomonas. The persistent detection of these bacteria genera in nymphal and adult life 
stages indicates they seem to be part of the core microbiome and likely play important biological 
roles in the normal development of M. velezangeli. Additionally, our observations suggest that 
multiple Wolbachia strains are present in M. velezangeli populations, but insect individuals 
seem to harbor single-strain infections. The findings reported by this study offer new avenues to 
improve our understanding of the microbiome contribution in the biology of Miridae plant bugs 
such as the tropical insect pest M. velezangeli. 
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Table 1. Overview of Illumina 16SrRNA-amplicon sequencing of the bacterial microbiota in 
Monalonion velezangeli.

Sample Raw PE 
reads

Clean PE 
reads

Raw merged 
sequences

Clean merged 
sequences

Total 
ASVs

Good’s 
coverage

Adult 1 173,233 96,265 74,667 69,782 63 100%

Adult 2 162,775 109,344 90,923 90,168 62 100%

Adult 3 167,579 109,789 91,180 90,009 45 100%

Nymph 1 170,239 110,169 87,856 86,212 82 99.99%

Nymph 2 172,490 85,101 60,756 58,026 85 100%

Nymph 3 169,525 115,394 97,798 97,605 71 100%

Table 2. Alpha diversity indices for 16SrRNA-based microbiota in Monalonion velezangeli.
     

Sample Observed Chao1 (±se) ACE (±se) Fisher
Shannon 

(H’)

Adult1 63 63 (±0.0) 63 (±1.69) 6.82 0.81

Adult2 62 62 (±0.0) 62 (±2.90) 6.50 0.41

Adult3 45 45 (±0.0) 45 (±1.91) 4.55 0.37

Nymph1 82 83 (±2.33) 82.5 (±3.25) 8.94 0.46

Nymph2 85 85 (±0.0) 85 (±2.97) 9.78 1.12

Nymph3 71 71 (±0.0) 71 (±2.66) 7.49 0.39

Table 3. Bacterial genus annotations for ASVs considered as members of the core microbiota in 
Monalonion velezangeli.
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ID
Overall 

abundance
Genus (Family) rank annotation#

ASV01 91.7% Wolbachia (Rickettsiaceae)

ASV02 0.97% Romboutsia (Peptostreptococcaceae)*

ASV03 0.79% Romboutsia (Peptostreptococcaceae)*

ASV04 0.73% Ignavibacterium (Ignavibacteriaceae)*

ASV05 0.47% Clostridium (Clostridiaceae)*

ASV06 0.26% Paracoccus (Rhodobacteraceae)

ASV07 0.25% Undetermined (Anaerolineaceae)*

ASV08 0.22% Allobaculum (Erysipelotrichaceae)

ASV09 0.19% Methylobacterium (Methylobacteriaceae)

ASV10 0.14% Sediminibacterium (Chitinophagaceae)

ASV11 0.13% Allobaculum (Erysipelotrichaceae)

ASV12 0.12% Faecalibacterium (Ruminococcaceae)

ASV13 0.11% Clostridium (Clostridiaceae)

ASV14 0.09% Undetermined (Lachnospiraceae)

ASV15 0.09% Collinsella (Coriobacteriaceae)

ASV16 0.09% Rothia (Micrococcaceae)

ASV17 0.06% Clostridium (Clostridiaceae)

ASV18 0.06% Undetermined (Peptostreptococcaceae)

ASV19 0.06% Allobaculum (Erysipelotrichaceae)

ASV20 0.05% Sphingomonas (Sphingomonadaceae)

ASV21 0.04% Undetermined (Coriobacteriaceae)

# The taxonomic classification was determined using the 16S GreenGenes (GG) database with a 
confidence level of ≥0.7. For ASVs where GG failed to assign a Genus taxon, the Genus identification 
was performed using the BLASTn and BioCloud search algorithms with a concomitant ≥97% sequence 
identity for their top hits (taxa denoted with asterisk [*]). Further details can be found in the Methods 
section.
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Figure 1. Diversity and community structure of the bacterial microbiota in adult and nymph life 
stages of Monalonion velezangeli. (A) Rarefaction curves. (B) Alpha diversity indices and their 
corresponding p-value of the Mann-Whitney U test. (C) Principal coordinate analysis (PCoA) 
plot based on Bray-Curtis dissimilarity of bacterial communities in nymphs and adults. (D) Non-
metric multidimensional scaling (NMDS) ordination analysis plot based on Bray-Curtis 
dissimilarity of bacterial communities in nymphs and adults. Stress value represents the 
goodness-of-fit for the NMDS analysis.
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Figure 2. Taxonomic composition of the bacterial microbiota in nymphs and adults of 
Monalonion velezangeli. (A) Relative abundance at Phylum level. (B) Relative abundance at 
Order level. (C) Heatmap for relative abundances at genus level. (D) Number of ASV 
sequences consistently detected on either adults of nymphs and number of shared ASVs (circle 
intersection) as members of the core microbiota.
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Figure 3. Relative abundance of the bacterial microbiota, with the exclusion of Wolbachia-
associated sequences, for nymphs and adults of Monalonion velezangeli. (A) Relative 
abundances at Phylum level. (B) Heatmap of relative abundances at genus level.
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Figure 4. Molecular screening for presence of Wolbachia endosymbiont in Monalonion 
velezangeli samples. DNA samples from single insects (HU15.1 to HU20.6) were tested for 
PCR amplification of the Wolbachia wsp gene using wsp81F and wsp691R primers. Quality of 
DNA was tested by amplification of the 28S rRNA (28S) gene fragment (~700 bp). DNA from a 
Drosophila melanogaster (Dm) population was used as positive control for Wolbachia infection, 
and water (-) as negative control.
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Figure 5. Maximum Likelihood phylogenetic tree of Wolbachia wsp sequences from Monalonion 
velezangeli and representative Wolbachia strains from other host insects at the GenBank 
database. Wolbachia supergroups A (green branch) and B (blue branch) clusters based on wsp 
sequences are shown. Sequence haplotypes clustering of the M. velezangeli wsp isolates, 
wMvel1 and wMvel2, are shown in purple and pink colors respectively. Hemiptera species are 
highlighted in bold letters. The aLRT branch supports are indicated as red numbers. Genbank 
accession numbers precede each sequence name.
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