Submit a preprint

Turnover statistics

Average time to find at least 2 reviewers after submission = 26 days (median = 17)

Average time from submission to 1st decision = 68 days (median = 57)

 

 

12

Within-species variation in the gut microbiome of medaka (*Oryzias latipes*) is driven by the interaction of light intensity and genetic backgrounduse asterix (*) to get italics
Charlotte Evangelista, Stefaniya Kamenova, Beatriz Diaz Pauli, Joakim Sandkjenn, Leif Asbjørn Vøllestad, Eric Edeline, Pål Trosvik, Eric Jacques de MuinckPlease use the format "First name initials family name" as in "Marie S. Curie, Niels H. D. Bohr, Albert Einstein, John R. R. Tolkien, Donna T. Strickland"
2023
<p style="text-align: justify;">Unravelling evolution-by-environment interactions on the gut microbiome is particularly relevant considering the unprecedented level of human-driven disruption of the ecological and evolutionary trajectories of species. Here, we aimed to evaluate whether an evolutionary response to size-selective mortality influences the gut microbiome of medaka (<em>Oryzias latipes</em>), how environmental conditions interact with the genetic background of medaka on their microbiota, and the association between microbiome diversity and medaka growth-related traits. To do so, we studied two lineages of medaka with known divergence in foraging efficiency and life history raised under antagonistic size-selective regimes for 10 generations (i.e. the largest or the smallest breeders were removed to mimic fishing-like or natural mortality). In pond mesocosms, the two lineages were subjected to contrasting population density and light intensity (used as proxies of resource availability). We observed significant differences in the gut microbiome composition and richness between the two lines, and this effect was mediated by light intensity. The bacterial richness of fishing-like medaka (small-breeder line) was reduced by 34% under low-light conditions compared to high-light conditions, while it remained unchanged in natural mortality-selected medaka (large-breeder line). However, the observed changes in bacterial richness did not correlate with changes in adult growth rate or body condition. Given the growing evidence about the gut microbiomes importance to host health, more in-depth studies are required to fully understand the role of the microbiome in size-selected organisms and the possible ecosystem-level consequences.</p>
https://figshare.com/s/d5235f25f3d7b15a0e47You should fill this box only if you chose 'All or part of the results presented in this preprint are based on data'. URL must start with http:// or https://
https://figshare.com/s/d5235f25f3d7b15a0e47You should fill this box only if you chose 'Scripts were used to obtain or analyze the results'. URL must start with http:// or https://
https://figshare.com/s/d5235f25f3d7b15a0e47You should fill this box only if you chose 'Codes have been used in this study'. URL must start with http:// or https://
bacterial communities, 16S rRNA gene sequencing, harvest-induced evolution, mesocosm, light, fish density
NonePlease indicate the methods that may require specialised expertise during the peer review process (use a comma to separate various required expertises).
Microbiomes
Chandni Talwar, chandni.talwar@bcm.edu, BCMHouston, Andrea M. Tarnecki, atarnecki@auburn.edu, Auburn University, Lucie Zinger, lucie.zinger@bio.ens.psl.eu, Institut de Biologie de l’Ecole Normale Supérieure No need for them to be recommenders of PCIMicrobiol. Please do not suggest reviewers for whom there might be a conflict of interest. Reviewers are not allowed to review preprints written by close colleagues (with whom they have published in the last four years, with whom they have received joint funding in the last four years, or with whom they are currently writing a manuscript, or submitting a grant proposal), or by family members, friends, or anyone for whom bias might affect the nature of the review - see the code of conduct
e.g. John Doe [john@doe.com]
2023-03-30 16:53:31
Konstantinos (Kostas) Kormas